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The scattering of electrons by edge dislocations in AI 

Helmut Bross and Oliver Haberlen 
Sektion Physik, UniveniSt Miinchen, Federal Republic of Germany 

Received 4 May 1993, in find form 12 luly 1993 

Abstract A new scheme is proposed to describe the scattering of electrons by deformations due 
to lattice defects. It is based on the assumption that these d e f o r d o n s  are quite homogeneous 
on an atomic scale with the consequence that the potential seen by the electrons is quite similar 
to that obnined from self-consistent band-structure calculations for homogeneously deformed 
lattices. As a first example the scattering by the dilatation field of an edge dislocation is treated. 
The electrical resistivity is evaluated by solving the Bolumann equation. taking into account 
the shape of the Fermi surface and the anisotmpy of the scattering probability. Experimental 
and theoretical values of the electrical resistivity due w edge dislocations in AI are found 
to be in qualitative agreement showing that the scattering by the dilatation is the dominant 
mechanism in the case of edge didomtiom. As was stated by wans we find the anisotropy 
relation p ~ / p l l  < 1.5. That means that edge d i s l d o n s  have a non-zero component ofelectrid 
resistivity p11 along the dislocation line. 

1. Introduction 

Despite great efforts in the last 40 years the electrical resistivity produced by dislocations 
is still not satisfactorily explained for non-free-electron metals (Ziman 1964, Watts 1987). 
Because the displacement field of these defects is multi-valued and at certain planes even 
discontinuous across the missing plane of atoms most of these investigations are based on 
the concept of the deformation potential (Bardeen and Shockley 1950) according to which 
only the strain field produced by the dislocation causes the electron to be scattered. Far more 
crude is the assumption that the wave-functions of the conduction electrons are approximated 
by plane waves, which is only correct if the ions of the crystal are approximated by a 
positive background. With these simplifications the conduction electrons are scattered by 
the potential 

Vdef(T) = [dN(EF)]@(T) (1.1) 

which can easily be derived from the requirement that the highest occupied energy levels 
must be equal in an inhomogeneously strained metal (Landauer 1951). Here no is the 
electronic density of the undeformed crystal and N ( E F )  = ; n o / E ~  is the density of 
states at the Fermi level. O(T) is the dilatation produced by the dislocation. Thus the 
conduction electrons suffer no scattering by the shear components of the strain tensor with 
the consequence that within the framework of linear elasticity screw dislocations do not 
produce any elechical resistivity. A more refined treatment by Hunter and Nabarro (1953), 
which goes beyond equation (1.1). could not even qualitatively explain the increase of the 
electrical resistivity observed after cold work. The discrepancy is approximately a factor of 
30 for Cu, Ag, Au and Al. Investigations beyond the theory of linear elasticity (Seeger and 
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Stehle 1956, Seeger and Bross 1960) could considerably reduce the discrepancy but still 
suffer from the fact that they are based on the free-electron approximation. Therefore, new 
investigations of the problem that benefit from the great progress achieved in the electron 
theory of solids are desirable, 

In the present paper a conceptionally new method to treat the scattering of Bloch 
electrons by deformation is developed. It is based on the fact that the strain field in 
the deformed crystals varies weakly on an atomic scale apart from the core of the defect. 
This means that over the range of a large number of atomic cells the strain field may be 
considered to be homogeneous. In such a region the potential seen by the electrons is quite 
similar to the potential obtained from self-consistent band-structure calculations with the 
same lattice deformation. Screening effects produced by the redistribution of the electrons 
are taken into account at least globally by this treatment. In a similar way as in the scheme 
of Hunter and Nabarro, not the displacement, but the strain, is considered as the origin 
of the perturbation potential. Thus rigid translations of the lattice will have no effect. No 
ambiguity will occur if the displacement field is of the order of a lattice vector or is multiple 
valued, as is the case for edge dislocations where the displacement increases by a lattice 
vector around a closed circuit which is threaded by the dislocations. We believe that this 
kind of scattering is even more effective in the case of non-vanishing dilatation than the 
scattering caused by the redistribution of the electrons to equalize the Fermi energy given 
by equation (1.1). In crystals deformed by pure shears it is the sole origin of the scattering. 

As long as we restrict ourselves to first-order perturbation theory (the Born 
approximation), the scattering amplitude (n'k'lVpcrlnk) of a deformed crystal may be 
obtained by the superposition of the contributions due to the nine components of the 
distortion tensor. This will considerably reduce the numerical work. However, we may 
go beyond first-order perturbation theory as self-consistent band-structure calculation can 
be performed for any arbitrary deformation of a crystal. 

In the present paper the new concept is first applied to the scattering of electrons by the 
dilatation produced by an edge dilocation in  AI. It is based on self-consistent calculations 
using the MAPW formalism (Bross 1964, Bross et al 1970, Bross and Eder 1987) which 
allows us to treat the Bloch states Ink), which are the basis for calculating the scattering 
amplitude (n'k'lV,,[nlc) on the same level as the perturbation potential. This is very 
important since V,,, shows strong variation near the nuclei. When analogous calculations 
for uniaxially strained crystals and crystals with pure shear are available the scattering by 
the full strain field of an edge dislocation or of a screw dislocation will also be investigated. 

In section 2 the r-dependent 
deformation potentials are defined, based on investigations of periodic crystals with different 
lattice parameters. This information is used in section 3 to determine the scattering amplitude 
(n'k'lVp,lnk) for a crystal that is inhomogeneously strained by lattice defects. In first-order 
perturbation theory this amplitude is found to factorize in a magnitude completely defined 
by band-structure calculations and the Fourier transform of the distortion field. In section 4 
an explicit expression for an edge dislocation in an Fcc crystal is derived. In contrast to the 
continuum approach, the conduction electrons are found to suffer a change of the momentum 
parallel to the dislocation line. Section 5 deals with the solution of the Bolmann equation, 
taking into account completely the asphencity of the Fermi surface and the anisotropy of the 
scattering. Kohlers' (1948, 1949a, b) variational principle will be used. Finally in section 6 
preliminary investigations for edge dislocations are described with results quite close to the 
experimental ones. 

The outline of the present paper is the following. 
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2. The concept of an T-dependent deformation potential 

In the LDA formalism (Hohenberg and Kohn 1964, Kohn and Sham 1965. Sham and Kohn 
1965) self-consistent calculations may be performed for a homogeneously deformed crystal. 
Its deformation is described by the Jacobian J or the disrortion 

Jlk = &k -k P l k  (2.1) 

yielding the Eulerian strain tensor (Munagham 1951) 

Elk = i ( J j l  J j t  - 61k) i(,& + Pkl  P j l f i j k ) .  (2.2) 

Sums upon repeated indices are implicitly assumed throughout this paper. Using the Kohn- 
Sham (1965) equations the one-particle energy &(P) as well as the panicle density 

are found as a function of or E .  The summation over n and extends over tgose one- 
particle states for which E,,&(& < E?. In the deformed crystal the wave-vector k and the 
reciprocal Mice vectors are obtained by the fine transformation 

from the corresponding vectors of the undeformed case. 
With regard to the inhomogeneous case considered in the following sections it is useful 

that the zero level of Coulomb potential is chosen such that the Fermi energy is identical 
to zero for any value of the distortion: 

EF(p) = 0. (2.5) 

Besides p ( r ,  p) the self-consistent procedure yields the effective one-particle potential 
V&(r, p). If the deformation is chosen to be small, e.g. llfill << 1 ,  both p ( r ,  P) and 
V&(p., p) may be approximated by a suitably chosen power expansion in 0. Restriction to 
the first non-trival terms gives the identities 

for any pair F and T satisfying 

r " = J . r .  (2.8) 

Here and in the following : means the trace of a product of two tensors. Definitions 
(2.6) and (2.7) guarantee that the second-rank tenmrs P and W have the correct translation 
symmetry with respect to lattice vectors R of the undeformed crystal, as %(T, 0) and 
P(T, 6) do not change under a rigid translation by a lattice vector: 

R=J .R .  (2.9) 
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Note that W ( r )  is not a mere partial derivative of V&, P )  with respect to p. Rewriting 
the identities in the following way 

H Brass and 0 Haberlen 

Veff(P, 0) = V d l +  m - 1  . r, 0) -4- P : W((1+ P)-‘ I T )  (2.10) 

shows that the first term describes a rescaling OF the one-particle potential of the undeformed 
crystal. In the deformed crystal new physical phenomena are mainly attributed to the tensor 
W which plays the role of an r-dependent potential. In the following W is called the 
r-dependent deformation potential. 

Using first-order perturbation theory it can easily verified that the change of the 
one-particle state described by the wave-vectors k and k = J-’ . k in the undeformed and 
deformed crystal, respectively, is given by 

E,$ -Erik = ,Bjr(nklfl/m)Wjr(T) -PjPrlnk) (2.11) 

where p is the operator of momentum. Usually the right-hand term is called the band 
deformation potential for the Bloch state Ink).  A similar expression for the energy shift 
is given by Khan and Allen (1984). but their tensors X ( T )  and our W ( r )  have a different 
origin. 

As we will see in the next section the present definition of v-dependent deformation 
potential suffers from the fact that it additionally requires knowledge of the displacement 
field when we want to describe the scattering of Bloch electrons in an inhomogeneously 
strained crystal even in the lowest order of the strain. This obvious disadvantage can be 
avoided by a simple power expansion of Ve&. p )  

&a(?, P )  = Vdf(F, 0) t P : W r )  (2.12) 

where W may be considered as a modified deformation potential. Strictly speaking such 
a definition is only valid in the limit 101 -+ 0. Otherwise the function W(r) vanes on 
a subatomic scale as Ver(r,  p )  and Vc&, 0) show different translation symmetry. Using 
equation (2.8) the relation 

 pi,(^) = Wjr(r) - ~ , a v , ~ ( ~ , o ) / a ~ ~  (2.13) 

in the central atomic cell is derived showing gradW(T) to be discontinuous at the surface 
of the atomic polyhedron. 

3. Scattering of Bloc41 electrons in an inhomogeneously deformed crystal 

In this section it is assumed that a slowly varying distortion field P ( v )  strains a crystal 
inhomogeneously. That means that the change of P(T) on the atomic scale can be neglected, 
llall. 11 grad p(~)ll  << 1. A displacement of such behaviour may be caused by lattice defects 
or long-wavelength phonons. As this assumption is not true for the core of a dislocation or 
of a point defect such regions must be excluded. In an inhomogeneously strained crystal 
the wave-vector IC is no longer a good quantum number and transitions from the Bloch state 
Ink) into (n’k’) will occur. For k’ # k this transition is essentially described by the matrix 
element 

(n’k’l Vp,(?)lnk) = 1 ~ ~ ~ , ( ~ ) V v p o ( ? ) Y ~ , ( i ) d 3 i  (3.1) 
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where Wnk and W,,e are Bloch functions of the undeformed crystal. V&) is the effective 
one-particle potential of the deformed crystal in the sense of the KohnSham (1965) 
formalism. The integral has to be performed in the strained crystal. As the deformation is 
slowly varying it may be divided into atomic cells of varying shape 

(3.2) 

where V& is the atomic cell at I?. Its deformation is approximately described by the 
distortion p(&. As a consequence of the inhomogeneous deformation of the whole crystal 
a bare perturbation is produced which is screened by the conduction electrons. Now OUT 
basic assumption is that the resulting one-particle potential might be approximated by the 
potential of a homogeneously deformed crystal having the distortion p(R): 

(3.3) V,,(i  + R) = V e f f [ i  + R, P(R)I. 
Using (2.7) we obtain up to terms linear in p 

V,,[i + R, p ( R ) ]  = VC& + R, 0)  + p(k) : W(T + R) for i = (1 +p) . r .  (3.4) 

Note that both functions appearing on the right-hand side (RHS) are periodic with respect to 
the lattice vectors R of the undeformed crystal. 

Using an affine transformation the integration appearing in (3.2) may be expressed by 
an integration over the atomic cells of the undeformed crystal 

= exp[i(k-IC’) .R]{1 +Tr[B(R)])/ W : , k , ( r + p - T + k )  
V, 

x [ V e ~ ( r )  +@(I?) : W(r)I . W ~ T  + p . T + R) d3r. (3.5) 

For values of 0. r within the atomic cell both Bloch functions may be expressed by 

W(rfp.r+R)= W ( ~ + R ) + ( ( p . ~ ) . g r a d W ( r + ~ ) .  (3.6) 

Unfortunately for large values of R an analoguous approximation is not allowed for the 
second term k in the argument of the Bloch functions. Restricting up to terms linear in p 
we obtain after a straightforward manipulation 

+ ojr C e x p [ i ( k  - k‘) . R ] p j f ( f i )  
R 

where 

(3.7) 
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In deriving equation (3.7) we have assumed that the vector R characterizing the atomic cell 
in the deformed crystal and its map R in the unstrained crystal differ from one another by 
an amount of order p.  In fact their difference is defined by the displacement field 
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s = R - R  (3.9) 

which can be comparable in magnitude to the lattice spacing. This displacement field 
survives in the first term of equation (3.8) since it describes how the Bloch functions Ink) 
and In'k') vary in the strained crystal. In the formulation of the ?--dependent deformation 
potential W there is no way to avoid this term. This may have severe consequences when 
s is multi-valued or even discontinuous. Provided that s is well behaved and small on an 
interatomic scale a power expansion in the displacement is possible, yielding 

'P + k)Ve*(?-)@,k(?- + I?) d3r = D. x e x p [ i ( k  - k') .R]s(R) (3.10) 
R 

where 

D = -(n'k'l grad V&nk) + & f f ( ? - ) @ i r k , ( ~ ) W n k ( ~ )  d F .  (3.11) 

This obvious disadvantage can only be avoided by using the concept of the modified 
deformation potential defined by equation (2.12). Then the deviation of the Kohn-Sham 
potential from its value in the perfectly periodic lattice is given by 

I ,  

- p ( R )  : W(T) .  (3.12) 

As long as we are interested in terms linear in the Strain, the matrix element for the hansition 
from the state Ink) into the state In'k') is then given by 

(n'k'lVperlnk) = CP(R) : 1 Y&(T+ R)W(?-)@.k(r + R)d3r (3.13) 

where the integral extends over the atomic cell characterized by the lattice vector R in the 
unstrained crystal. Using Bloch's theorem yields 

R VC 

(n'k'lV,,lnk) = (n'k'lE(r)Ink)K : x P ( R ) e x p [ i ( k  - k') .RI. (3.14) 
R 

Note that the RHS of (3.8), apart from the surfnce integral, is the same as the matrix element 
in the preceeding equation. Similar to the doubledifferential cross section for scattering of 
neutrons, (n'k'l V,,lnk) factorizes into two terms that are of completely different physical 
origin and that are only coupled by the change of the quasi-momentum of the Bloch 
electrons. Both matrix elements D and (n'k'lE(r)Ink)v, are completely defined by the 
Bloch functions, the one-particle potential KB of the unstrained crystal and the r-dependent 
modified deformation potential obtained by investigating a homogeneously deformed crystal. 
The second factor is simply the Fourier transform of the distortion P(R). It is solely 
determined by the deformation of the crystal and independent of the electronic structure. 
This new formalism does not distinguish between dilatations and pure shear deformation 
as all elements (n'k'l Wj~Ink) will be non-zero in a real crystal. h deriving equations (3.7) 
and (3.14) we have explicitly exluded the case k' = k, so they will not merge in the RHS 
of (2.11). 
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4. Scattering of Bloch electrons by the dilatation field of an edge dislocation 

In this section the new formalism is illustrated by investigating the scattering of Bloch 
electrons by a non-split edge dislocation in an FCC lattice. As the evaluation of the elements 
of D is rather time consuming we restrict ourselves to the scattering by its dilatation field. 
In an FCC lattice the Burgers vector b ,  the unit  vector t along the dislocation line and the 
unit vector ?z normal to the slip plane are given by 

7693 

b =  i(0. -1. 1) t = ( l / & ) ( - Z , l , l )  7 L = ( u / A ) ( l , l , l ) .  (4.1) 

For simplicity the dilatation field obtained by the theory of linear elasticity for an isotropic 
medium 

Tr[p(r)l = Q(R) = -(b/ZJr)[(l - Zu)/(l - u)](R. n)/[(R. n)’ + ( R  . bo)’] 

is used (Kroner 1958). U denotes Poisson’s number and bo = 6/llbll. 

primitive vectors for the FCC lattice: 

(4.2) 

In order to evaluate the Fourier transform of 0 it is advantageous to use the following 

(4.3) a1 = u ( l , l , l )  a2=p(0.-1,1) I a 3 = $ 2 ( 1 , 1 , 0 )  

where a1 and a2 define the mesh of lattice points in the plane perpendicular to the dislocation 
line. As the primitive vector has a non-zero component in this plane 

(4.4) 

the arrangement of the lattice points is shifted by the vector 5.1 - ;a2 when going from 
one plane to the next. After six such steps it will look the same again. Therefore, the third 
side of the parallelepiped introduced to define periodic boundary conditions is chosen to be 
6Na3. The lattice points within this fundamental domain are defined by 

1 I 
a3 = Sat - la2 + U311 with a31 = (u/2&)t 

R = liai + lzaz + (613 + h)a3 (4.5) 

where h = 1, . . . , 6  and - ; N  < 1 1 ,  12, I3 < ; N .  Using (4.4) R may be decomposed in the 
following way 

R = RL + VA + 6l;a3ll (4.6) 

where 

(4.7) 

are two-dimensional vectors in the glide plane. Here l ; ,  1; and 1; are integers which may 
be restricted as l , ,  l2 and I, due to the periodic boundary conditions. 

Depending on the value of A, the Fourier transform of 0 may be split into six partial 

I RA = rial + lSa2 V A  = (fa, - ?a2)A 

sums 

6 
~ e x p [ i ( k - k ’ ) . R ] O ( R ) = ~ u A ( k - k ‘ )  
R i 



1694 

where 
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and 

(4.9) 

(4.10) 

Due to the periodic boundary conditions the RHS is only non-zero when 30,. q,) is a 
multiple of x .  ?bus we have 

(4.11) 

As the diameter of the first Brillouin zone in the direction of the unit vector is 2.5 times 
( Z x / u ) m  the momentum of the electrons in the direction of the dislocation line can 
change by the discrete values n ( 2 x j u ) m  with -5 < n < 5. For this reason we expect 
a greater variety of scattering processes than in the continuum approximation which leaves 
unchanged the component of wavevectors in the direction of the dislocation. This will 
have the consequence that in the directions of the dislocation line the electrical resistivity 
will no longer be zero, a fact first pointed out by Watts (1987). 

The partial sums uA are not absolutely convergent. In order to obtain finite results, the 
summation over RL may be limited to the lattice points within a circle of radius R,, or 
by a factor of convergency exp(-pIRl+ vA12), which allows a summation analogous to 
the Ewald technique. In both cases the magnitudes of p or R,, are approximately given 
by the density of dislocation lines. 

(4.12) 2 I /#  = R,, = ljxn. 

Ewald's summation technique in the present m e  is based on the identity 

(4.13) 

where q =. 0. The following steps are analoguous to the three-dimensional case yielding 
finally (Leibfried 1955) 

(4.14) 
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where V, = &a2 and K is a vector of the two-dimensional reciprocal lattice spanned by 
the basis vector (2x/3a)(l, 1 , l )  (r/a)(O, -1, 1). r~ is chosen in such a way that a small 
number of terms in the sums over RL and K yield the desired accuracy. In the first sum 
the core of the dislocations is excluded as RL # 0. The term K = 0 in the second sum 
comes from the far-reaching deformation field and is rapidly varying for p l  N 0 (forward 
scattering). For p = 0 it is zero but in its immediate vicinity a peak with height inversely 
proportional to the square root of the density of dislocations occurs. 

5. Solution of the Boltzmann equation 

According to Fermi's golden rule the transition probability for the scattering from Bloch 
state Ink) into the state In'k') in our case is given by 

W ( n k ,  n'k') = (2x/h)l(n'k'IV~~Inlc)IZS(Enk - En,k,). (5.1) 

For edge dislocations in an FCC crystal this expression is quite anisotropic, i.e. it does not 
only depend on the absolute value of the change of momentum. Further complications are 
due to the fact that the Fermi surface of the metals in mind is quite non-spherical. Therefore, 
it is not possible to solve the Boltzmann equation exactly. Its approximate solution by use of 
the variational principle is well known. See, for example, Kohler (1948, 1949a, b), Wilson 
(1953) and Ziman (1960). It is based on the fact that of all functions Xnk.i satisfying the 
equation 

the solution of the Boltzmann equation gives the left-hand-side (LHS) maximum. Here e is 
the electronic charge and f (Erik) the Fermi-Dirac distribution. As the LHS is simply qi 
the variational procedure approximates the diagonal elements of the tensor of the electrical 
conductivity from below. As usual the variational principle is solved by the use of a Ritz 
~2nsuzz for the vector function X n k .  I n  order to satisfy the translation symmetry in k space 
we have approximated each component of Xnk by a linear combination of suitably chosen 
monomials expressed in components of grad E,k. In the case of AI to be treated in the 
next section a satisfactory accuracy is reached by a Ritz ansatz of rank 60. 

6. Explicit results for edge dislocations in A1 

Preliminary investigations of the change of electrical resistivity due to dislocations have been 
c a n i d  out for the case of AI where explicitly self-consistent band-structure calculations 
were available for different values of the lattice parameter (Bross and Eder 1987). These 
investigations are based on the MAPW formalism using the warped-muffin-tin approximation. 
Consequently the effective one-electron potential Vea(r) as well as the r-dependent 
deformation potential W(r) are obtained as functions of IrpI inside the muffin-tin spheres 
and are given by a finite series of plane waves in the interstitial. As in the case of Cu where 
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- 3  1 I 
0.0 . 5  1 . o  I . 5  2.0 2 . 5  

Figure 1. The deformation potential 0 inside the muffin-fin sphere: full curve. as defined in 
equalion (2.12); broken curve, next term. <$;,, in the power expansion with respecl to 0. 

full potential calculations have been performed (Fehrenbach and Bross 1993) non-spherical 
contributions of the potential are expected to have little influence on the present problem. 

The value of Tr(@) inside the muffin-tin sphere is plotted in  figure I (full curve). 
It shows slowly varying behaviour even near the nucleus at r = 0, revealing directly 
the character of a screened perturbation potential. Its spherical mean value -1.57 Ryd 
is considerable larger than the width of the occupied conduction band (0.81 Ryd). For 
comparison the next term in the power expansion in @, @;;{, (to be summed over repeated 
indices) is mapped by the broken curve. It is of the same magnitude as the term of first 
order with the consequence that far from the dislocation line non-linear effects can be 
neglected. The potential defined by equation (2,lO) is plotted in figure 2. It has quite 
different behaviour. Starting with a rather large value, 64.7 Ryd, it reaches the value 
-0.15 Ryd at the surface of the muffin-tin sphere. Again the broken curve shows the next 
term, Wji’,, in the power expansion with respect to @ which turns out to be relatively small. 

1qa.u.1 
Figure 2. The deformation potential Tr(W) inside the muffin-tin sphere: full c w e ,  as defined 
in equation (2.10); broken curve. next term, W:;T’,, in the power expansion with respect t o p .  



The scattering ojelectmns by edge dislocations in A1 7691 

The characteristics of the MAPW formalism are as cited by Bmss and Eder (1987): 
each Bloch function is superposed by a rapidly varying part and a linear combination of 
plane waves with (k + K)zaz/(Za)2 < 14.85. As the evaluation of the matrix elements 
(n’k‘lTr Wlnk) is quite time consuming the number of plane waves has been restricted by 
(k +K)*(a /Za) ’  < 7.5 in those contributions which have only slight influence on the final 
results. The corresponding error is estimated to be less than 5%, 

As is common for static defects the scattering of the conduction electrons at the Fermi 
surface produces the electrical resistivity. According to section 4, in the present caSe 
the wave-vectors in the direction of the dislocation line can only change by a multiple 
of ( 2 a j a ) f i .  Figure 3 maps the intersection of the Fermi surface with the planes 

k = (Z/a$tn, n = 0, .  . . , 5 .  The closed curves within the first Brillouin zone are 
the relics of the second zone in the free-electron approximation whereas the small pockets 
at the corner of the Brillouin zone are hole states, which may be attributed to higher 
zones. With increasing value of k . t the influence of the latter regions becomes more 
important. Further details of the parametrization of the Fermi surface used to perform the 
three-dimensional integrals are desribed by one of the present authors (Haberlen 1988). We 
only want to mention here that the rapid oscillation of o ~ ( k  - k‘) near the forward direction 
was eliminated by a finer mesh of integration. 

The final results are depicted i n  figure 4, showing the tensor of electrical resistivity 
per density of dislocations. pzx and pyy are the components of the resistivity in the slip 
direction and perpendicular to it, respectively, and pir  is the component in the direction of 
the dislocation line. The full curve is the average f i  = +Tr(p);  the broken curve, with the 
scale on the RHS, is the anisotropy relation 

originally defined by Watts (1987). In contrast to older investigations we get a significant 
value of the electrical resistivity in the direction of dislocation with the consequence that the 
anisotropy relation IY reaches values between 1.0 and 1.5. Thus our investigations satisfy 
the criteria derived by an analysis of experimental results according to which a good theory 
should yield a value 01 less than about 1.6 (Watts 1987). 

The mean value 6 has to be compared with the experimental value given by Rider and 
Foxon (1966). For dislocation densities in the region 1.0 x IO9 cm-’ and 4.0 x lo9 cm-’ 
they have found the value ( 1 8 1  1) x 52 cm3 at 4.2 K which is larger by a factor of two 
than our value. As was stresed by Watts (1989) other measurements suffer from the fact 
that the dislocation densities are underestimated. After having corrected this Watts obtained 
values closer to our results. Considering the approximations which we have made in the 
present investigation it is quite remarkable that our results are so close to the experimental 
ones. 

7. Outlook 

Within the framework of our concept a far better agreement is to be expected by considering 

(i) the influence of all elements of the tensor of distortion and 
(ii) higher terms in the power expansion of p .  
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1 

Figure3. (a) Intersection of the Fermi surface with the 
plane kf  = 0 (length in mils of Zn/n); (6) Intersection 
of the Fermi surface with the plane kl = (2n /n ) f i  
(length in units of 2n/n): (e) intersection of the Fermi 
surface with the plane kl  = 2(2n/n) f i  (length in 
units of 2~10); (d) inreneetion of the Fermi surface 
with lhe plme kl = 3 ( 2 n / a ) f i  (length in units of 
Zn/o): (e) intersection of the Fermi surface with L e  

plane ki  = 4(2n/n) f i  (length in units of 2n/a). 

Certainly the scattering of the conduction electrons by the core of the dislocation will 
increase the electrical resistivity (Harrison 1958, Brown 1967, 1977a,b, 1978% b, Watts 
1988). In our treatment this core region may be chosen to be quite small compared to the 
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Density of dislocations /m-'/ 
Figure 4. Change of the electriul resistivity due to edge dislocations ( d e  on the LHS) and the 
anisotropy relation a (scale on lhe RHS). All components of the electrical resistivity are in units 
of IO-"' Cl cm3. ****, experimental values according to Rider and Foxon (1966). 

volume covered by the dislocation. The remaining pertubation potential' will be localized 
at the dislocation line but it is questionable whether this contribution may be approximated 
according to the ideas proposed by Brown. The influence of the topological singularity 
around the dislocation as described by Kawamura (1978a. b, 1982). Yosida and Kawamura 
(1979) and Teichler (1981, 1985) may have an influence, but even the magnitude of this 
effect is not known. 
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